题目列表(包括答案和解析)
(本小题满分14分)已知函数=+有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数=+(>0)的值域为6,+∞,求的值;
(2)研究函数=+(常数>0)在定义域内的单调性,并说明理由;
(3)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=+(是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分14分)已知函数=
(1) 若存在单调增区间,求的取值范围;
(2)是否存在实数>0,使得方程在区间内有且只有两个不相等的实数根?若存在,求出的取值范围?若不存在,请说明理由.
(本小题满分14分)
设函数
(1)当时,曲线在点处的切线斜率
(2)求函数的单调区间与极值;
(3)已知函数有三个互不相同的零点0,若对任意的恒成立,求的取值范围。
(本小题满分14分)
已知函数
(I)当a=1时,求函数的单调区间;
(II)求函数在区间[0,1]上的最小值。
(本小题满分14分)
已知函数F(x)=|2x-t|-x3+x+1(x∈R,t为常数,t∈R).
(Ⅰ)写出此函数F(x)在R上的单调区间;
(Ⅱ)若方程F(x)-k=0恰有两解,求实数k的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com