19.已知f(x)=满足f=x有唯一解. 的表达式, (2) 若数列xn=f(xn-1),且x1>0,n∈N*.n>1,求证:成等差数列, 的条件下.用x1和n表示xn. 查看更多

 

题目列表(包括答案和解析)

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知函数f(x)=(a,b为常数,ab≠0)满足f(2)=1,且方程f(x)=x仅有惟一解,求f(x).

查看答案和解析>>

如图,已知AB为两定点,且||=2c,C为动点且满足||=2a(ac>0,ac为常数),DAC中点,P在边BC上且·=0.

(1)以AB所在直线为x轴,AB中点为坐标原点,建立如图所示的平面直角坐标系,求点P的轨迹方程.

(2)若F、G是点P的轨迹上任意两个不同的点,且线段FG的中垂线与直线AB相交,交点为Qt,0).

①证明:存在最小的正数M,使得tM,并求M的值.

②若M=,求∠APC的取值范围.

查看答案和解析>>

已知实数a,b,c∈R,函数f(x)=ax3+bx2+cx满足f(1)=0,设f(x)的导函数为f′(x),满足f′(0)f′(1)>0.
(1)求数学公式的取值范围;
(2)设a为常数,且a>0,已知函数f(x)的两个极值点为x1,x2,A(x1,f(x1)),B(x2,f(x2)),求证:直线AB的斜率数学公式

查看答案和解析>>


同步练习册答案