20. 已知f(x)是定义在上的奇函数.当x<0时.f(x)=x2-x-2.解不等式f(x)>0. 解: 设x>0.则 -x<0. ∴ f (-x)=(-x)2-(-x)-2=x2+x-2. 而f (x) 是奇函数. ∴ f (-x)=-f (x). 于是 f (x)=-x2-x+2.x>0. ∴ (1) 由 得 . (2) 由 得 . 综上所述.不等式f (x)>0的解集为{x∣x<-1或0<x<1. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数f(x)=lg(ax-bx)(a>1>b>0).

(1)求y=f(x)的定义域;

 (2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;

 (3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

 

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)-h(x2)|≤a|x1x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

查看答案和解析>>

.(本小题满分12分)

已知函数f(x)=lg(ax-bx)(a>1>b>0).

 

(1)求y=f(x)的定义域;

 

(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;

 

(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

 

查看答案和解析>>

(本小题满分12分)已知函数y=f(x)在定义域(—1+∞)内满足f(o)=0,且f(x)= ,(f(x))是f(x)的导数)
(Ⅰ)求f(x)的表达式.
(Ⅱ)当a=1时,讨论f(x)的单调性
(Ⅲ)设h(x)=(ex—P)2+(x-P)2,证明:h(x)≥

查看答案和解析>>


同步练习册答案