设△的两个内角所对的边分别为.复数, , 若复数在复平面上对应的点在虚轴上.则△是 (A) 等腰三角形或直角三角形 (B) 等腰直角三角形 (C) 等腰三角形 (D) 直角三角形. 函数, 如果方程有且只有一个实根.那么实数应满足 (A) (B) (C) (D) 查看更多

 

题目列表(包括答案和解析)

(理科)设椭圆的右焦点为F1,直线与x轴交于点A,若(其中O为坐标原点)
(1)求椭圆M的方程;
(2)设点P是椭圆M上的任意一点,线段EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求的最大值.

查看答案和解析>>

(理科)设椭圆的右焦点为F1,直线与x轴交于点A,若(其中O为坐标原点)
(1)求椭圆M的方程;
(2)设点P是椭圆M上的任意一点,线段EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求的最大值.

查看答案和解析>>

一个口袋中装有三个红球和两个白球.第一步:从口袋中任取两个球,放入一个空箱中;第二步:从箱中任意取出一个球,记下颜色后放回箱中.若进行完第一步后,再重复进行三次第二步操作,
(理科)设ξ表示从箱中取出红球的个数,求ξ的分布列,并求出Eξ和Dξ.
(文科)分别求出从箱中取出一个红球、两个红球、三个红球的概率.

查看答案和解析>>

某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加且只能参加一个社团,假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的.
(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;
(2)(文科)求甲、乙、丙三人中恰有两人参加A社团的概率;
(3)(理科)设随机变量ξ为甲、乙、丙这三个学生参加A社团的人数,求ξ的分布列与数学期望.

查看答案和解析>>

某品牌专卖店准备在国庆期间举行促销活动,根据市场调查,该店决定从2种不同型号的洗衣机,2种不同型号的电视机和3种不同型号的空调中(不同种商品的型号不同),选出4种不同型号的商品进行促销,该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买任何一种型号的商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m(m>0)元奖金.假设顾客每次抽奖时获奖与否的概率都是
12

(Ⅰ)求选出的4种不同型号商品中,洗衣机、电视机、空调都至少有一种型号的概率;
(Ⅱ)(文科)若顾客购买两种不同型号的商品,求中奖奖金至少2m元的概率;
     (理科)设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X.请写出X的分布列,并求X的数学期望;
(Ⅲ)(理科)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?

查看答案和解析>>


同步练习册答案