∵0≤x≤,∴≤x+≤. 6分 结合函数y=-和y=sin(x+)的图象.易知≤-<1. ∴-2<a≤-就是所求. 9分 (2)∵x∈[0, ],∴当-2<a≤-时.函数图象关于直线x=对称.故x1+x2=. 12分18.解:由|1-|≤2得-2≤x≤10 2分 非p:A={x|x>10或x<-2} 4分 因m<0,由x2-2x+1-m2>0(m<0)得 命题q:B={x|x<1+m或x>1-m} 7分 又因为非p是q的充分非必要条件.所以AB 9分 所以,得-3≤m<0. 12分 查看更多

 

题目列表(包括答案和解析)

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

下列对应是不是从集合A到B的映射,为什么?

(1)A=R+,B=R,对应法则是“求平方根”;

(2)A={x|-2≤x≤2},B={y|0≤y≤1},对应法则是“平方除以4”;

(3)A={x|0≤x≤2},B={y|0≤y≤1},对应法则是f:x→y=(x-2)2,x∈A、y∈B;

(4)A={x|x∈N},B={-1,1},对应法则是f:x→y=(-1)x,x∈A、y∈B;

(5)A={x|x是平面内的圆},B{y|y是平面内的矩形},对应法则是“作圆的内接矩形”.

查看答案和解析>>

观察下列表格,探究函数f(x)=x+
4
x
,x∈(0,+∞)
的性质,
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y最小=
4
4

(2)证明:函数f(x)=x+
4
x
在区间(0,2)递减.
(3)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

已知函数已知幂函数g(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数,又f(x)=sinx+mcosx,F(x)=f′(x)[f(x)+f′(x)]-1,f′(x)是f(x)的导函数.
(I)若tanx=
13
,求F(x)的值;
(Ⅱ)把F(x)图象的横坐标缩小为原来的一半后得到H(x),求H(x)的单调减区间.

查看答案和解析>>

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,画出f(x)的图象(不需求出解析式)
(3)在(2)的条件下,求f(x)的图象与x轴所围成图形的面积.

查看答案和解析>>


同步练习册答案