20. (1)已知平面上两定点.的距离为4.点满足.求点的轨迹方程, 的的轨迹图象向右平移一个单位.再向下平移一个单位.恰与直线 相切.试求实数的值, (3)如图.是经过椭圆长轴顶点且与长轴垂直的直线.是两个 焦点.点.不与重合.若.则有.类比此结论到双曲线 .是经过焦点且与实轴垂直的直线.是两个顶点.点 .不与重合.若.试求角的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

已知如图,椭圆方程为.P为椭圆上的动点,

F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角

平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(1)求M点的轨迹T的方程;

(2)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

(本题满分14分)已知如图,椭圆方程为.P为椭圆上的动点,

F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角

平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(1)求M点的轨迹T的方程;(2)已知

试探究是否存在这样的点是轨迹T内部的整点

(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积

若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>


(本题满分14分)已知直角坐标平面内点到点与点的距离之和为
(Ⅰ)试求点的轨迹的方程;
(Ⅱ)若斜率为的直线与轨迹交于两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.

查看答案和解析>>

(本题满分14分)已知如图,椭圆方程为.P为椭圆上的动点,

F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角
平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.
(1)求M点的轨迹T的方程;(2)已知
试探究是否存在这样的点是轨迹T内部的整点
(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积
若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

查看答案和解析>>


同步练习册答案