题目列表(包括答案和解析)
20. (本小题满分13分)
已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
1. (本小题满分13分)
已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且.
(1) 求a的值;
(2) 试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;
(3) 对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
(本小题满分13分)
已知数列、、的通项公式满足,().若数列
是一个非零常数列,则称数列是一阶等差数列;若数列是一个非零常数列,则称数列是二阶等差数列.
(Ⅰ)试写出满足条件,,的二阶等差数列的前五项;
(Ⅱ)求满足条件(Ⅰ)的二阶等差数列的通项公式;
(Ⅲ)若数列的首项,且满足,求数列的通项公式.
(本小题满分13分)
已知正项数列{an}的首项a1=,函数f(x)=,g(x)=.
(1)若正项数列{an}满足an+1=f(an)(n∈N*),证明:{}是等差数列,并求数列{an}的通项公式;
(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}满足bn=,证明:b1+b2+…+bn<1;
(3)若正项数列{an}满足an+1=g(an),求证:|an+1-an|≤·()n-1
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com