甲.乙两个乒乓球运动员进行乒乓球单打比赛.已知在一局比赛中甲获胜的概率为0.6.乙获胜的概率为0.4.比赛时可以用三局两胜或五局三胜制.问在哪一种比赛制度下甲获胜的可能性较大? ①如果采用三局二胜制.则甲在下列两种情况下获胜:A-2∶0,A2-2∶1(前两局各胜一局.第三局甲胜). P(A1)=P2(0)=·0.62×0.40=0.36,P(A2)=P2(1)×0.6=·0.6×0.4×0.6=0.288. 因A1.A2互斥.故甲获胜的概率为P(A1+A2)=P(A1)+P(A2)=0.648. ②如果采用五局三胜制.则甲在下列三种情况下获胜:B1-3∶0 B2-3∶1(前三局中甲胜两局.负一局.第四局甲胜), B3-3∶2(前四局中甲.乙各胜两局.第五局甲胜),同①可求甲获胜的概率为0.682. 由①②的结果知.甲在五局三胜制中获胜的可能性更大. 查看更多

 

题目列表(包括答案和解析)

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>


同步练习册答案