①设AB方程为y=kx+m代入x2=2py得 ① 由得 -2pm=-p2 ∴2m=p.即-------- ② 由①得 ∴ ---------- 查看更多

 

题目列表(包括答案和解析)

已知以动点P为圆心的圆与直线y=-
1
20
相切,且与圆x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求动P的轨迹C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.
    (1)求直线L斜率k的取值范围;
    (2)设椭圆E的方程为
x2
2
+
y2
a
=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若
OR
OS
=0,求E离心率的范围.

查看答案和解析>>

双曲线C的中心在原点,右焦点为F(
2
3
3
, 0)
,渐近线方程为y=±
3
x

(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线l:y=kx+1与双曲线C交于A、B两点,问:当k为何值时,以AB为直径的圆过原点.

查看答案和解析>>

双曲线C的中心在原点,右焦点为F(
2
3
3
,0),渐近线方程为y=±
3
x

(Ⅰ)求双曲线C的方程;
(Ⅱ)若过点(0,1)的直线L与双曲线的右支交与两点,求直线L的斜率的范围;
(Ⅲ)设直线L:y=kx+1与双曲线C交与A、B两点,问:当k为何值时,以AB为直径的圆过原点.

查看答案和解析>>

如图,已知M(m,m2)、N(n,n2)是抛物线C:y=x2上两个不同点,且m2+n2=1,m+n≠0,直线l是线段MN的垂直平分线.设椭圆E的方程为
x2
2
+
y2
a
=1(a>0,a≠2)

(Ⅰ)当M、N在抛物线C上移动时,求直线L斜率k的取值范围;
(Ⅱ)已知直线L与抛物线C交于A、B、两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,OP中点为S,若
OR
OS
=0
,求椭圆E离心率的范围.

查看答案和解析>>

(2007•长宁区一模)设直线l的方程为y=kx-1,等轴双曲线C:x2-y2=a2(a>0)的中心在原点,右焦点坐标为( 
2
,0).
(1)求双曲线方程;
(2)设直线l与双曲线C的右支交于不同的两点A,B,记AB中点为M,求k的取值范围,并用k表示M点的坐标.
(3)设点Q(-1,0),求直线QM在y轴上截距的取值范围.

查看答案和解析>>


同步练习册答案