题目列表(包括答案和解析)
已知函数
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:
【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,
假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。
第三问中,
因为,这样利用单调性证明得到不等式成立。
解:(Ⅰ)
(Ⅱ)
(Ⅲ)见解析
已知数列{an}的通项公式为an = (nÎN*).
⑴求数列{an}的最大项;
⑵设bn = ,试确定实常数p,使得{bn}为等比数列;
⑶设,问:数列{an}中是否存在三项,,,使数列,,是等差数列?如果存在,求出这三项;如果不存在,说明理由.
(本小题满分16分)
已知数列{an}的通项公式为an = (nÎN*).
⑴求数列{an}的最大项;
⑵设bn = ,试确定实常数p,使得{bn}为等比数列;
⑶设,问:数列{an}中是否存在三项,,,使数列,,是等差数列?如果存在,求出这三项;如果不存在,说明理由.
(本小题满分16分)
已知数列{an}的通项公式为an = (nÎN*).
⑴求数列{an}的最大项;
⑵设bn = ,试确定实常数p,使得{bn}为等比数列;
⑶设,问:数列{an}中是否存在三项,,,使数列,,是等差数列?如果存在,求出这三项;如果不存在,说明理由.
(本小题满分16分)
已知数列{an}的通项公式为(nÎN*).
(1)求数列{an}的最大项;
(2)设,试确定实常数p,使得{bn}为等比数列;
(3)设,问:数列{an}中是否存在三项,,,
使数列,,是等差数列?如果存在,求出这三项;如果不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com