函数的定义域是? 查看更多

 

题目列表(包括答案和解析)

函数的定义域为集合,函数的定义域为集合. (1)判定函数的奇偶性,并说明理由.

(2)问:的什么条件(充分非必要条件 、必要非充分条件、充要条件、既非充分也非必要条件)? 并证明你的结论.

查看答案和解析>>

函数的定义域为{x|x≠1},图象过原点,且
(1)试求函数f(x)的单调减区间;
(2)已知各项均为负数的数列{an}前n项和为Sn,满足,求证:
(3)设,是否存在m1,,n1,m2,n2∈N*,使得ln2011∈(g(m1,n1),g(m2,n2))?若存在,求出m1,,n1,m2,n2,证明结论;若不存在,说明理由.

查看答案和解析>>

函数的定义域为{x|x≠1},图象过原点,且
(1)试求函数f(x)的单调减区间;
(2)已知各项均为负数的数列{an}前n项和为Sn,满足,求证:
(3)设,是否存在m1,,n1,m2,n2∈N*,使得ln2011∈(g(m1,n1),g(m2,n2))?若存在,求出m1,,n1,m2,n2,证明结论;若不存在,说明理由.

查看答案和解析>>

函数的定义域为{x|x≠1},图象过原点,且
(1)试求函数f(x)的单调减区间;
(2)已知各项均为负数的数列{an}前n项和为Sn,满足,求证:
(3)设,是否存在m1,,n1,m2,n2∈N*,使得ln2011∈(g(m1,n1),g(m2,n2))?若存在,求出m1,,n1,m2,n2,证明结论;若不存在,说明理由.

查看答案和解析>>

函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数满足什么条件,是“圆锥托底型” 函数.

查看答案和解析>>


同步练习册答案