精英家教网 > 高中数学 > 题目详情

函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数满足什么条件,是“圆锥托底型” 函数.

(1)是,不是,(2),(3)

解析试题分析:(1)新定义问题,必须读懂题意,严格按定义进行等价转化.本题判断函数是否为“圆锥托底型”函数,即判断是否存在常数,使得对一切实数均成立,若成立必须证明,否则给出反例.本题解题关键在于常数的确定. ,所以可确定常数而由可知无论常数为什么正数,总能取较小的数比它小,即总能举个反例,如当时,就不成立.(2)本题实质按新定义转化为不等式恒成立问题:存在,使得对于任意实数恒成立.即当时,,而取得最小值2,.(3)本题是讨论满足不等式恒成立的条件.即实数满足什么条件,存在常数,使得对一切实数均成立.当时,无限制条件;当时,,需,否则若,则当时,,即不能恒成立;若,则.
试题解析:(1).,即对于一切实数使得成立,“圆锥托底型” 函数.          2分
对于,如果存在满足,而当时,由,得,矛盾,不是“圆锥托底型” 函数.     5分
(2)是“圆锥托底型” 函数,故存在,使得对于任意实数恒成立.
时,,此时当时,取得最小值2,     9分
而当时,也成立.
的最大值等于.        10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求函数的定义域和极值;
(2)当时,试确定函数的零点个数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使为常数,)为广义周期函数,并求出它的一个广义周期和周距
(3)设函数是周期的周期函数,当函数上的值域为时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值.
(2)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数的图象恒在轴上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数在区间 上有最大值,最小值.
(1)求函数的解析式;
(2)设.若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈时,不等式f(1+xlog2a)≤f(x-2)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案