已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值.
(2)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.
(1)只有一个极小值点,极小值为0. (2)
解析试题分析:(1)首先求出F(x)的表达式,然后求导,根据单数的性质,求出原函数的单调区间,即可求出函数F(x)的极值点及相应的极值.
(2) 设,依题意即求在上存在零点时的取值范围.即只需要在上恒成立.即,在上恒成立.然后分,,,,根据导数的性质分别求使在上成立的a的取值范围,最后求并集.
试题解析:(1),
,
为减函数;
为增函数,
所以只有一个极小值点,极小值为0. 4分
(2) 设
依题意即求在上存在零点时的取值范围.
又当时,,且在定义域内单调递增,
所以只需要在上恒成立.
即,在上恒成立.
即,在上恒成立. 7分
若,显然不成立,因为由第一问知在为增函数,
故
,即在恒成立,
不妨设,
,
, 9分
若,则,若,,所以为增函数,(不合题意),
若,若,,为增函数,(不合题意),
若,若,,为减函数,
科目:高中数学 来源: 题型:解答题
已知函数a为常数且a>0.
(1)证明:函数f(x)的图像关于直线x=对称;
(2)若x0满足f(f(x0))= x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;
(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数,是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数、满足什么条件,是“圆锥托底型” 函数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(1)a≥-2时,求F(x)=f(x)-g(x)的单调区间;
(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
求下列各题中的函数f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com