设函数.
(1)求的值域;
(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.
科目:高中数学 来源: 题型:解答题
如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当时,求在上有最大值;
(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(),其图像在处的切线方程为.函数,.
(1)求实数、的值;
(2)以函数图像上一点为圆心,2为半径作圆,若圆上存在两个不同的点到原点的距离为1,求的取值范围;
(3)求最大的正整数,对于任意的,存在实数、满足,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使(为常数,)为广义周期函数,并求出它的一个广义周期和周距;
(3)设函数是周期的周期函数,当函数在上的值域为时,求在上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值.
(2)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知α、β是方程x2+(2m-1)x+4-2m=0的两个实根,且α<2<β,求m的取值范围;(2)若方程x2+ax+2=0的两根都小于-1,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com