精英家教网 > 高中数学 > 题目详情

已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.

(1);(2)存在

解析试题分析:(1)由离心率为,倾斜角为的直线交椭圆于两点,.通过联立直线方程与椭圆的方程,可求得的值.即可得结论.
(2)依题意可得符合要求的圆E,即为过点, 的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到点距离的最小值是,结合图形可得圆心在线段上,半径最小.又由于点F已知,即可求得结论.
试题解析:(1)因为离心率为,所以
所以椭圆方程可化为:,直线的方程为,      2分
由方程组,得:,即, 4分
,则,               5分

所以,所以,椭圆方程是;      7分
(2)由椭圆的对称性,可以设,点轴上,设点
则圆的方程为
由内切圆定义知道,椭圆上的点到点距离的最小值是
设点是椭圆上任意一点,则, 9分
时,最小,所以①              10分
又圆过点,所以②              11分
在椭圆上,所以③                     12分
由①②③解得:
时,,不合,
综上:椭圆存在符合条件的内切圆,点的坐标是.        13分
考点:1.待定系数求椭圆方程.2.函数的最值.3.方程的思想解决解决解几问题.3.归纳化归的思想.4.运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-4ax+2a+6,x∈R.
(1)若函数的值域为[0,+∞),求a的值;
(2)若函数的值域为非负数集,求函数f(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数a为常数且a>0.
(1)证明:函数f(x)的图像关于直线x=对称;
(2)若x0满足f(f(x0))= x0但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;
(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为
(1)当时,求直路所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间;
(2)若不等式有解,求实数m的取值菹围;
(3)证明:当a=0时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足f(n)=,其中,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍.
(1)栽种多少年后,该树木的高度是栽种时高度的8倍;
(2)该树木在栽种后哪一年的增长高度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的值域;
(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列各题中的函数f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

同步练习册答案