已知函数.
(1)当时,求的单调区间;
(2)若不等式有解,求实数m的取值菹围;
(3)证明:当a=0时,.
(1) 参考解析;(2);(3)参考解析
解析试题分析:(1)由于 ,.需求的单调区间,通过对函数求导,在讨论的范围即可得函数的单调区间.
(2)本小题可等价转化为,求实数m的取值菹围,使得有解,等价于小于函数,的最小值.所以对函数求导,由导函数的解析式,通过应用基本不等式,即可得到函数的单调性,从而得到最小值.即可得到结论.
(3)由于当时,.本小题解法通过构造.即两个函数与的差,通过等价证明函数的最小值与函数的最大值的差大于2.所以对两个函数分别研究即可得到结论.
(1) 的定义域是,当时,,所以在单调递增;当时,由,解得.则当时. ,所以单调递增.当时,,所以单调递减.综上所述:当时,在单调递增;当时,在上单调递增,在单调递减.
(2)由题意:有解,即有解,因此只需有解即可,设,,因为,且时,所以,即.故在上递减,所以故.
(3)当时,,与的公共定义域为,,设,.因为,在单调递增. .又设,,.当
科目:高中数学 来源: 题型:解答题
如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当时,求在上有最大值;
(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使(为常数,)为广义周期函数,并求出它的一个广义周期和周距;
(3)设函数是周期的周期函数,当函数在上的值域为时,求在上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com