精英家教网 > 高中数学 > 题目详情

已知函数.
(1)a≥-2时,求F(x)=f(x)-g(x)的单调区间;
(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.

(1)详见解析;(2).

解析试题分析:本题主要考查函数的单调性、函数的最值、导数等基础知识,意在考查考生的运算求解能力、推理论证能能力以及分类讨论思想和等价转化思想的应用.第一问,先确定的解析式,求出函数的定义域,对求导,此题需讨论的判别式,来决定是否有根,利用求函数的增区间,求函数的减区间;第二问,先确定解析式,确定函数的定义域,先对函数求导,求出的两根,即,而利用韦达定理,得到,即得到代入到中,要求,则构造函数,求出的最小值即可,对求导,判断函数的单调性,求出函数的最小值即为所求.
试题解析:(1)由题意,其定义域为,则,2分
对于,有.
①当时,,∴的单调增区间为
②当时,的两根为
的单调增区间为
的单调减区间为.
综上:当时,的单调增区间为
时,的单调增区间为
的单调减区间为.   6分
(2)对,其定义域为.
求导得,
由题两根分别为,则有,   8分
,从而有
,  10分
.
时,,∴上单调递减,

.      12分
考点:函数的单调性、函数的最值、导数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使为常数,)为广义周期函数,并求出它的一个广义周期和周距
(3)设函数是周期的周期函数,当函数上的值域为时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值.
(2)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数的图象恒在轴上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数).
(1)探索并证明函数的单调性;
(2)是否存在实数使函数为奇函数?若有,求出实数的值,并证明你的结论;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数在区间 上有最大值,最小值.
(1)求函数的解析式;
(2)设.若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知α、β是方程x2+(2m-1)x+4-2m=0的两个实根,且α<2<β,求m的取值范围;(2)若方程x2+ax+2=0的两根都小于-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3.
(1)判断f(x)的奇偶性;(2)求证:f(x)>0.

查看答案和解析>>

同步练习册答案