已知函数, 数列{}满足: 证明: (I).; (II).. 证明: (I).先用数学归纳法证明.n=1,2,3,- (i).当n=1时,由已知显然结论成立. (ii).假设当n=k时结论成立,即.因为0<x<1时 ,所以f上是增函数. 又f(x)在[0,1]上连续, 从而.故n=k+1时,结论成立. 由可知.对一切正整数都成立. 又因为时.. 所以.综上所述. (II).设函数..由(I)知.当时.. 从而 所以g 上是增函数. 又g (x)在[0,1]上连续,且g (0)=0, 所以当时.g (x)>0成立.于是. 故. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知函数满足:;(1)分别写出的解析式 的解析式;并猜想的解析式(用表示)(不必证明)(2分)(2)当时,的图象上有点列和点列,线段与线段的交点,求点的坐标;(4分)

(3)在前面(1)(2)的基础上,请你提出一个点列的问题,并进行研究,并写下你研究的过程 (8分)

查看答案和解析>>

(本小题满分14分) 已知函数及正整数数列. 若,且当时,有; 又,,且对任意恒成立. 数列满足:.

(1) 求数列的通项公式;

(2) 求数列的前项和

(3) 证明存在,使得对任意均成立.

查看答案和解析>>

(本小题满分14分)

已知函数

(1)讨论函数的单调性;

(2)当为偶数时,正项数列满足,求的通项公式;

(3)当为奇数且时,求证:

 

查看答案和解析>>

(本小题满分14分)

已知函数

(1)讨论函数的单调性;

(2)当为偶数时,正项数列满足,求的通项公式;

(3)当为奇数且时,求证:

查看答案和解析>>

(本小题满分14分)

已知函数,在定义域内有且只有一个零点,存在, 使得不等式成立. 若是数列的前项和.

(I)求数列的通项公式;

(II)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(n为正整数),求数列的变号数;

(Ⅲ)设),使不等式

 恒成立,求正整数的最大值.

查看答案和解析>>


同步练习册答案