[理]在直棱柱中.已知 (1)求使的充要条件(用表示), (2)求证为锐角, (闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀绾惧鏌曟繛鐐珔缁炬儳鐏濋埞鎴︽偐瀹曞浂鏆¢梺鎼炲€曢悧蹇涘箟閹间焦鍋嬮柛顐g箘閻熴劑姊虹紒妯虹瑨闁诲繑宀告俊鐢稿礋椤栨氨顔婇梺瑙勬儗閸ㄩ亶寮ィ鍐╃厽閹兼番鍨婚崯鏌ユ煙閸戙倖瀚�查看更多

 

题目列表(包括答案和解析)

(08年濮阳市摸底考试理)  在直三棱柱A1B1C1-ABC中,∠BAC=,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为             (    )

    A.[ ,1)    B.[,2)         C.[1,)        D.[)

查看答案和解析>>

(理)如图a所示,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km.当山坡上公路长度为l km(1≤l≤2)时,其造价为(l2+1)a万元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;

(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;

(3)在AB上是否存在两个不同的点D′,E′,使沿折线.PD′E′O修建公路的总造价小于(2)中得到的最小总造价?证明你的结论.

a)

第19题图

(文)如图b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.

(1)求AC1与BC所成角的余弦值;

(2)求二面角C1-BD-C的大小;

(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.

第19题图

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�