题目列表(包括答案和解析)
设f(x)=|x-a|+1,a∈R,则
A.存在a,使f(x)是偶函数,也存在a,使f(x)是奇函数
B.存在a,使f(x)是偶函数,但不存在a,使f(x)是奇函数
C.不存在a,使f(x)是偶函数,但存在a,使f(x)是奇函数
D.不存在a,使f(x)是偶函数,也不存在a,使f(x)是奇函数
设h(x)=x+,x∈[,5],其中m是不等于零的常数,
(1)m=1时,直接写出h(x)的值域
(2)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围;
(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnx,g(x)=ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
设f(x)=+bx+1,且f(-1)=f(3),则f(x)>0的解集是( )
A.(-∞,-1)∪(3,+∞) B.R
C.{x|x≠1} D.{x|x=1}
设函数f(x)=,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x-2y在D上的最大值为________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com