4.若等差数列{an}只有有限项.且.前9项的和18.前n项和240. 则 ( ) A.15 B.16 C.17 D.18 查看更多

 

题目列表(包括答案和解析)

设Sn为等差数列{an}的前n项和,Tn为等比数列{bn}的前n项积.
(1)求证:数列S10,S20-S10,S30-S20成等差数列,并给出更一般的结论(只要求给出结论,不必证明);
(2)若T10=10,T20=20,求T30的值?类比(1)你能得到什么结论?(只要求给出结论,不必证明).

查看答案和解析>>

(2009•卢湾区一模)在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>

(2009•黄浦区二模)若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)

查看答案和解析>>

若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)

查看答案和解析>>

在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2mS2m=2Sm+m2d
表示=______①
用Sm表示SnmSnm=______②
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>


同步练习册答案