18.已知函数, 且y = f ( x )的图象经过点(1, n2 ).n = 1, 2 , -数列为等差数列. (1) 求数列{an}的通项公式, (2) 当n为奇数时, 设是否存在自然数m和M, 使得不等式恒成立? 若存在, 求出M-m的最小值,若不存在, 请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本题满分14分)

(理)已知数列{an}的前n项和,且=1,

.

(I)求数列{an}的通项公式;

(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有

< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;

(III)求证:≤bn<2.

 

查看答案和解析>>

(本题满分14分)

(理)已知数列{an}的前n项和,且=1,

.(I)求数列{an}的通项公式;

(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有

< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;

(III)求证:≤bn<2.

 

查看答案和解析>>


同步练习册答案