一天.小明在做剪纸拼图游戏时.无意中.他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起.且正三角形的中心O恰好为扇形的圆心.接着.他把扇形绕点O转动.--. (1)小明思考这样一个问题:在把扇形绕点O转动时.两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变.请说明理由,若认为不能保持不变.请问对这两张纸片再增加什么条件.就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由. (2)由这一游戏.你还能联想到怎样的图形在变换过程中.也具有类似的性质?请画出图形.并作简要阐述.不要求证明. 查看更多

 

题目列表(包括答案和解析)

一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起,且正三角形的中心O恰好为扇形的圆心,接着,他把扇形绕点O转动,….
(1)小明思考这样一个问题:在把扇形绕点O转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变,请说明理由;若认为不能保持不变,请问对这两张纸片再增加什么条件,就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由.
(2)由这一游戏,你还能联想到怎样的图形在变换过程中,也具有类似的性质?请画出图形精英家教网,并作简要阐述,不要求证明.

查看答案和解析>>

一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起,且正三角形的中心O恰好为扇形的圆心,接着,他把扇形绕点O转动,….
(1)小明思考这样一个问题:在把扇形绕点O转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变,请说明理由;若认为不能保持不变,请问对这两张纸片再增加什么条件,就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由.
(2)由这一游戏,你还能联想到怎样的图形在变换过程中,也具有类似的性质?请画出图形,并作简要阐述,不要求证明.

查看答案和解析>>

一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起,且正三角形的中心O恰好为扇形的圆心,接着,他把扇形绕点O转动,….
(1)小明思考这样一个问题:在把扇形绕点O转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变,请说明理由;若认为不能保持不变,请问对这两张纸片再增加什么条件,就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由.
(2)由这一游戏,你还能联想到怎样的图形在变换过程中,也具有类似的性质?请画出图形,并作简要阐述,不要求证明.

查看答案和解析>>

拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:
(a+2b)(a+b)=a2+3ab+2b2
(1)则图③可以解释为等式:_________________________________________.
(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a2+7ab+2b2,并通过拼图对多项式3a2+7ab+2b2因式分解: 3a2+7ab+2b2=                
(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),结合图案,指出以下关系式
(1)xy=
(2)x+y=m;
(3)x2-y2=m·n;
(4)x2+y2
其中正确的关系式的个数有………    (     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是-2℃,小红此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?

查看答案和解析>>


同步练习册答案