题目列表(包括答案和解析)
(本小题满分14分)
如图,已知椭圆
的左、右焦点分别为
短轴两的端点为A、B,且四边形
是边长为2的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若C、D分别是椭圆长轴的左、右端点,动点M满足MD
连结
交椭圆于点
证明:
为定值;
(Ⅲ)在(Ⅱ)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,说明理由.
(本小题满分14分)
如图,已知圆
:
是椭圆
的内接△
的内切圆,其中
为椭圆的左顶点。
![]()
(1)求圆
的半径
;
(2)过点
作圆
的两条切线交椭圆于
两点,证明:直线
与圆
相切。
(本小题满分14分)
已知直线
经过椭圆S:
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作
轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意
,求证:
.
![]()
(本小题满分14分)
如图7,已知椭圆
:
的离心率为
,以椭圆
的左顶点
为
圆心作圆
:
,设圆
与椭圆
交于点
与点
.
(1)求椭圆
的方程;
(2)求
的最小值,并求此时圆
的方程;
(3)设点
是椭圆
上异于
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值.
(本小题满分14分)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆
。
![]()
(1)若椭圆
,判断
与
是否相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且短半轴长为
的椭圆
的方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围?
(3)如图:直线
与两个“相似椭圆”
和
分别交于点
和点
,证明:![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com