设数列{an}.{bn}.{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2. 证明{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1. 证明:必要性:设{an}是公差为d1的等差数列,则bn+1-bn=(a n+1-an+3)-(an-an+2)=(a n+1-an)-(a n+3-a n+2)=d1-d1=0, ∴bn≤b n+1成立. 又c n+1-cn=(a n+1-an)+2(a n+2-a n+1)+3(a n+3-a n+2)=d1+2d1+3d1=6d1. ∴数列{cn}为等差数列. 充分性:设数列{cn}是公差为d2的等差数列,且bn≤b n+1. 证法一:∵cn=an+2a n+1+3a n+2, ① ∴c n+2=a n+2+2a n+3+3a n+4. ② ①-②,得cn-c n+2=(an-a n+2)+2(a n+1-a n+3)+3(a n+2-an+4)=bn+2b n+1+3b n+2, ∴cn-c n+2=(cn-cn+1)+(c n+1-cn+2)=-2d2. ∴bn+2bn+1+3bn+2=-2d2, ③ 从而有bn+1+2bn+2+3bn+3=-2d2. ④ ④-③,得(bn+1-bn)+2(bn+2-bn+1)+3(bn+3-bn+2)=0. ⑤ ∵bn+1-bn≥0,bn+2-bn+1≥0,bn+3-bn+2≥0, ∴由⑤得bn+1-bn=0. 由此不妨设bn=d3,则an-a n+2=d3. 由此cn=an+2an+1+3aa+2=4an+2an+1-3d3, 从而cn+1=4an+1+2an+2-3d3=4a n+1+2an-5d3. 两式相减,得cn+1-cn=2(an+1-an)-2d3, 因此an+1-an=(cn+1-cn)+d3=d2+d3, ∴数列{cn}是等差数列. 证法二:令An=a n+1-an,由bn≤b n+1,知an-a n+2≤a n+1-a n+3, 从而a n+1-an≥a n+3-a n+2,即An≥A n+2. 由cn=an+2a n+1+3a n+2,c n+1=a n+1+2a n+2+3a n+3,得c n+1-cn=(a n+1-an)+2(a n+2-a n+1)+3(a n+3-a n+2), 即An+2A n+1+3A n+2=d2时 ⑥ 由此得A n+2+2A n+3+3An+4=d2. ⑦ ⑥-⑦,得(An-A n+2)+2(A n+1-A n+3)+3(A n+2-An+4)=0. ⑧ ∵An-A n+2≥0,A n+1-A n+3≥0,A n+2-A n+4≥0, ∴由⑧,得An-A n+2=0. 于是由⑥,得4An+2A n+1=An+2A n+1+3A n+2=d2, ⑨ 从而2An+4A n+1=4A n+1+2A n+2=d2. ⑩ 由⑨和⑩,得4An+2A n+1=2An+4A n+1, 故A n+1=An, 即a n+2-a n+1=a n+1-an, ∴数列{cn}是等差数列. 查看更多

 

题目列表(包括答案和解析)

设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).

查看答案和解析>>

设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).

查看答案和解析>>

设数列{an}{bn}{cn}满足:bnanan2cnan2an13an2(n123,…)求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bnbn1(n123,…)

 

查看答案和解析>>

设数列{an}、{bn}满足a1=4,

(1)证明:an>2,0<bn<2(n∈N*);

(2)设,求数列{cn}的通项公式;

(3)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,数列{anbn}的前n项和为{Pn},求证:.(n≥2)

查看答案和解析>>

等比数列{an}中a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.

(1)求数列{an}的通项公式;

(2)若函数f(x)对任意的x∈R都有f(x)+f(1-x)=1,数列{bn}满足,设cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>


同步练习册答案