例1 已知函数.若方程无实数根.则实数的取值范围是( ) A. B. C. D. 分析:所给的函数是分段函数.而方程无实数根.可利用数形结合法转化为两函数图象无交点. 解:在同一坐标系内作出函数与的图象.如图1. 若两函数图象无交点.则.故选 C. 查看更多

 

题目列表(包括答案和解析)

已知函数,则下列命题中:
(1)函数f(x)在[-1,+∞)上为周期函数;
(2)函数f(x)在区间[m,m+1)(m∈N)上单调递增;
(3)函数f(x)在x=m-1(m∈N)取到最大值0,且无最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有两个实根,则
正确的命题的个数是( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

已知函数,且无实根,则下列命题中:
(1)方程一定无实根;
(2)若>0,则不等式对一切实数都成立;
(3)若<0,则必存在实数,使得
(4)若,则不等式对一切都成立。
其中正确命题的序号有           (写出所有真命题的序号)

查看答案和解析>>

15、已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使得f[f(x0)]>x0
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有
(1)(2)(4)
(写出所有真命题的序号)

查看答案和解析>>

已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立;④若a+b+c=0,则不等式f[f(x)]<x对一切实数x都成立;
以上说法中正确的是:
①③④
①③④
.(把你认为正确的命题的所有序号都填上).

查看答案和解析>>

已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使得f[f(x0)]>x0
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有________(写出所有真命题的序号)

查看答案和解析>>


同步练习册答案