题目列表(包括答案和解析)

 0  55771  55779  55785  55789  55795  55797  55801  55807  55809  55815  55821  55825  55827  55831  55837  55839  55845  55849  55851  55855  55857  55861  55863  55865  55866  55867  55869  55870  55871  55873  55875  55879  55881  55885  55887  55891  55897  55899  55905  55909  55911  55915  55921  55927  55929  55935  55939  55941  55947  55951  55957  55965  447348 

3、  有穷数列与无穷数列;

试题详情

2、  数列的项与项数;

试题详情

1、  数列的定义及表示方法;

试题详情

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:

(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前项和,则其通项为满足则通项公式可写成

(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容。

(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标。

 ①函数思想:等差等比数列的通项公式求和公式都可以看作是的函数,所以等差等比数列的某些问题可以化为函数问题求解。

②分类讨论思想:用等比数列求和公式应分为;已知时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解。

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决。解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的,特别注意与年份有关的等比数列的第几项不要弄错。

试题详情

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

试题详情

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

试题详情

(四)单调区间的求解过程,已知

(1)分析 的定义域;(2)求导数 ;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间。

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。

③求极值、求最值。

注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。

  f/(x0)=0不能得到当x=x0时,函数有极值。

但是,当x=x0时,函数有极值 f/(x0)=0

判断极值,还需结合函数的单调性说明。

试题详情

(三)为增函数的关系。

为增函数,一定可以推出,但反之不一定,因为,即为。当函数在某个区间内恒有,则为常数,函数不具有单调性。∴为增函数的必要不充分条件。

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。

试题详情

(二)时,为增函数的关系。

若将的根作为分界点,因为规定,即抠去了分界点,此时为增函数,就一定有。∴当时,为增函数的充分必要条件。

试题详情

(一)为增函数的关系。

能推出为增函数,但反之不一定。如函数上单调递增,但,∴为增函数的充分不必要条件。

试题详情


同步练习册答案