题目列表(包括答案和解析)
已知正项数列
的前n项和
满足:
,
(1)求数列
的通项
和前n项和
;
(2)求数列
的前n项和
;
(3)证明:不等式
对任意的
,
都成立.
【解析】第一问中,由于
所以![]()
两式作差
,然后得到![]()
从而
得到结论
第二问中,
利用裂项求和的思想得到结论。
第三问中,![]()
![]()
又![]()
结合放缩法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正项数列
,∴
∴
又n=1时,![]()
∴
∴数列
是以1为首项,2为公差的等差数列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
对任意的
,
都成立.
已知幂函数
满足
。
(1)求实数k的值,并写出相应的函数
的解析式;
(2)对于(1)中的函数
,试判断是否存在正数m,使函数
,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数
满足
,得到![]()
因为
,所以k=0,或k=1,故解析式为![]()
(2)由(1)知,
,
,因此抛物线开口向下,对称轴方程为:
,结合二次函数的对称轴,和开口求解最大值为5.,得到![]()
(1)对于幂函数
满足
,
因此
,解得
,………………3分
因为
,所以k=0,或k=1,当k=0时,
,
当k=1时,
,综上所述,k的值为0或1,
。………………6分
(2)函数
,………………7分
由此要求
,因此抛物线开口向下,对称轴方程为:
,
当
时,
,因为在区间
上的最大值为5,
所以
,或
…………………………………………10分
解得
满足题意
已知中心在坐标原点,焦点在
轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
第二问中,
假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
(Ⅱ) 假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得
……② ……………………9分
则
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
综上(i)(ii)可知,存在这样的直线
,其斜率k的取值范围是![]()
![]()
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
|
|
|
|
|
50 |
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率![]()
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,
还喜欢打篮球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生
和
不全被选中的概率.下面的临界值表供参考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
其中
.)
【解析】第一问利用数据写出列联表
第二问利用公式
计算的得到结论。
第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
,
,![]()
基本事件的总数为8
用
表示“
不全被选中”这一事件,则其对立事件
表示“
全被选中”这一事件,由于
由
2个基本事件由对立事件的概率公式得![]()
解:(1) 列联表补充如下:
|
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
|
男生 |
20 |
5 |
25 |
|
女生 |
10 |
15 |
25 |
|
合计 |
30 |
20 |
50 |
(2)∵![]()
∴有99.5%的把握认为喜爱打篮球与性别有关
(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
,
,![]()
基本事件的总数为8,
用
表示“
不全被选中”这一事件,则其对立事件
表示“
全被选中”这一事件,由于
由
2个基本事件由对立事件的概率公式得
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com