当得.G点的坐标为. 查看更多

 

题目列表(包括答案和解析)

已知过点的动直线与抛物线相交于两点.当直线的斜率是时,

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

【解析】(1)B,C,当直线的斜率是时,

的方程为,即                                (1’)

联立  得         (3’)

由已知  ,                    (4’)

由韦达定理可得G方程为            (5’)

(2)设,BC中点坐标为               (6’)

 由       (8’)

    

BC中垂线为             (10’)

                  (11’)

 

查看答案和解析>>

如图,在直角坐标系xoy中,坐标原点O(0,0),以动直线l:y=mx+n(m,n∈R)为轴翻折,使得每次翻折后点O都落在直线y=2上.
(1)求以(m,n)为坐标的点的轨迹G的方程;
(2)过点E(0,
54
)作斜率为k的直线交轨迹G于M,N两点;(ⅰ)当+MN|=3时,求M,N两点的纵坐标之和;(ⅱ)问是否存在直线,使△OMN的面积等于某一给定的正常数,说明你的理由.

查看答案和解析>>

定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点),记平面内所有向量的“相伴函数”构成的集合为S。
(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x-2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值,当点M在圆C上运动时,求tan2x0的取值范围。

查看答案和解析>>

已知双曲线C的中心为坐标原点O,右顶点为A(1,0),G为双曲线C的右准线与x轴的交点,P、Q为双曲线C上不同两点,且满足≠0,=0.

(Ⅰ)求双曲线C的方程;

(Ⅱ)若直线FQ按向量a=(0,1)平移后所得直线与双曲线C交于不同两点M、N,当-≤-时,求直线PQ的斜率的取值范围.

查看答案和解析>>

定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x-2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x处取得最大值.当点M在圆C上运动时,求tan2x的取值范围.

查看答案和解析>>


同步练习册答案