5.如图1.设P.Q为△ABC内的两点.且.=+.则△ABP的面积与△ABQ的面积之比为 图1 图2 查看更多

 

题目列表(包括答案和解析)

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)问的条件下,求|
SP
|
的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点在直线l:x=1上,离心率e=
1
2
.设P,Q为椭圆上不同的两点,且弦PQ的中点T在直线l上,点R(
1
4
,0).
(1)求椭圆的方程;
(2)试证:对于所有满足条件的P,Q,恒有|RP|=|RQ|;
(3)试判断△PQR能否为等边三角形?证明你的结论.

查看答案和解析>>

如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)B1作直线交椭圆于PQ两点,使PB2QB2,求△PB2Q的面积.

 

查看答案和解析>>

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足(a+b+c=1),在第(1)问的条件下,求的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

设双曲线(a>0,b>0)的右顶点为A,P是双曲线上异于顶点的一个动点,从A引双曲线的两条渐近线的平行线与直线OP分别交于QR两点.(如图)

(1)证明无论P点在什么位置,总有||2=|·|(O为坐标原点);

(2)若以OP为边长的正方形面积等于以双曲线实、虚轴长为边长的矩形的面积,求双曲线离心率的取值范围.

查看答案和解析>>


同步练习册答案