题目列表(包括答案和解析)
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村
到
年十年间每年考入大学的人数.为方便计算,
年编号为
,
年编号为
,…,
年编号为
.数据如下:
|
年份( |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
人数( |
3 |
5 |
8 |
11 |
13 |
14 |
17 |
22 |
30 |
31 |
(1)从这
年中随机抽取两年,求考入大学的人数至少有
年多于
人的概率;
(2)根据前
年的数据,利用最小二乘法求出
关于
的回归方程
,并计算第
年的估计值和实际值之间的差的绝对值。
![]()
【解析】(1)设考入大学人数至少有1年多于15人的事件为A则P(A)=1-
=
(4’)
(2)由已知数据得
=3,
=8,
=3+10+24+44+65=146
=1+4+9+16+25=55(7’)
则
=
,
(9’)
则回归直线方程为y=2.6x+0.2 (10’)
则第8年的估计值和真实值之间的差的绝对值为![]()
已知
.
(1)求
的单调区间;
(2)证明:当
时,
恒成立;
(3)任取两个不相等的正数
,且
,若存在
使
成立,证明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
当k
0时,
>0,所以函数g(x)的增区间为(0,+
),无减区间;
当k>0时,
>0,得x>k;
<0,得0<x<k∴增区间(k,+
)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 当x变化时,h(x),
的变化情况如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
设G(x)=lnx-
(x
1)
=
=![]()
0,当且仅当x=1时,
=0所以G(x) 为减函数, 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,综上,当x
1时, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 设H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t)
<H(1)=0∵
∴
=![]()
∴lnx0 –lnx
>0, ∴x0 >x![]()
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点![]()
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为![]()
第二问中,设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得 ![]()
∵
,∴![]()
确定结论直线
与曲线
总有两个公共点.
然后设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
得到。
(1)设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为
. ………………2分
(2)设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得
,……5分
∵
,∴
,
∴直线
与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
当
时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点
,使得
总能被
轴平分
设函数
,其中常数![]()
(1)讨论
的单调性
(2)若当
时,
恒成立,求
的取值范围
【解析】(1)求导、分解,讨论导函数的零点,(2)只要最小值大于0,求a的范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com