[解析](1)设86年底人口总数为a.住宅总面积10a.年人口增长的公比为(即后一年是前一年人口的倍).年住宅总面积的公差为.则2006年底人均住房面积为.则.故1996年底人均住房面积. 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村年十年间每年考入大学的人数.为方便计算,年编号为年编号为,…,年编号为.数据如下:

年份(

10

人数(

11

13

14

17

22

30

31

(1)从这年中随机抽取两年,求考入大学的人数至少有年多于人的概率;

(2)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值。

 

【解析】(1)设考入大学人数至少有1年多于15人的事件为A则P(A)=1-=      (4’)

(2)由已知数据得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 则回归直线方程为y=2.6x+0.2                           (10’)

则第8年的估计值和真实值之间的差的绝对值为

 

查看答案和解析>>

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

设函数,其中常数

(1)讨论的单调性

(2)若当时,恒成立,求的取值范围

【解析】(1)求导、分解,讨论导函数的零点,(2)只要最小值大于0,求a的范围。

 

查看答案和解析>>


同步练习册答案