A. B1 C.2 D. 查看更多

 

题目列表(包括答案和解析)

已知A、D分别为椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=
3
2
,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且
PF1
PF2
的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>

已知A、D分别为椭圆E:=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>

(理)如图a所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,AC=BC=a,AA1=AB,E是AB1上的点.

(1)求二面角B1-AC-B的平面角的正切值;

(2)如何确定点E的位置,使得GE⊥AB1?并求此时C、E两点的距离.

(文)如图b所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,AC=BC=a,AA1=AB,C点在AB1上的射影为E,D为AB的中点.

(1)求证:AB1⊥平面CED;

(2)求二面角B1-AC-B的平面角的正切值.

第17题图

查看答案和解析>>

已知0≤a<2,0≤b<4,为估计在a>1的条件下,函数f(x)=x2+2ax+b有两相异零点的概率P.用计算机产生了[{0,1})内的两组随机数a1,b1各2400个,并组成了2400个有序数对(a1,b1),统计这2400个有序数对后得到2×2列联表的部分数据如下表:

则数据表中数据计算出的概率P的估计值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1=2,a7=b3 ab3=9.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)A={a1,a2,a3,…,a20},B={b1,b2,b3,…,a20},C=A∩B,求集合C中的各元素之和.

查看答案和解析>>

一、选择题:

1.B  2.D  3.A  4.A  5.A  6.B  7.B  8.B  9.C  10.C

二、填空题:

11.   12.     13.   14.      15. 16.      17.      18.       19. 20.1)、5)       21.       22.     23.3)4)        24.3

三、解答题:

25解:(Ⅰ) ……2分

 

.

的最小正周期是. 

(Ⅱ) ∵

.  

∴当时,函数取得最小值是.  

.  

26解:(1)∵,∴,即.      

.                  

,得;                     

,得.因此,

函数的单调增区间为;单调减区间为

取得极大值为取得极小值为

由∵

在[-,1]上的的最大值为,最小值为.  

(2) ∵,∴

∵函数的图象上有与轴平行的切线,∴有实数解.  

,∴,即

因此,所求实数的取值范围是.            

27解:(1)在中,

而PD垂直底面ABCD,

,

中,,即为以为直角的直角三角形。

设点到面的距离为,

,

;

(2),而,

,,是直角三角形;

(3),,

,

的面积

28解:(I)因为,成立,所以:

由: ,得 

由:,得

解之得: 从而,函数解析式为: 

(2)由于,,设:任意两数 是函数图像上两点的横坐标,则这两点的切线的斜率分别是:

又因为:,所以,,得:

知:                                                

故,当  是函数图像上任意两点的切线不可能垂直  

29解:(1)∵  ∴

两式相减得:

时,  ∴ 

是首项为,公比为的等比数列 

 

(2)   

 

以上各式相加得:

 

30解:(1)

                              

(2)由

      

                  

        

                                            

由此得

 


同步练习册答案