题目列表(包括答案和解析)
已知曲线
上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线
的轨迹方程;
(2)若过点
引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线
的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
【解析】第一问利用(1)过点
作直线
的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,
;,化简得
![]()
第三问点N与点M关于X轴对称,设
,, 不妨设
.
由于点M在椭圆C上,所以
.
由已知
,则
,
由于
,故当
时,
取得最小值为
.
计算得,
,故
,又点
在圆
上,代入圆的方程得到
.
故圆T的方程为:![]()
如图,
分别是椭圆
:
+
=1(![]()
)的左、右焦点,
是椭圆
的顶点,
是直线
与椭圆
的另一个交点,![]()
![]()
=60°.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)已知△![]()
的面积为40
,求
的值.
![]()
【解析】 (Ⅰ)由题![]()
![]()
=60°,则
,即椭圆
的离心率为
。
(Ⅱ)因△![]()
的面积为40
,设
,又面积公式
,又直线
,
又由(Ⅰ)知
,联立方程可得
,整理得
,解得
,
,所以
,解得
。
| 1 |
| 4 |
| 1 |
| 2 |
已知
,
是椭圆![]()
左右焦点,它的离心率
,且被直线
所截得的线段的中点的横坐标为![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设
是其椭圆上的任意一点,当
为钝角时,求
的取值范围。
【解析】解:因为第一问中,利用椭圆的性质由
得
所以椭圆方程可设为:
,然后利用
得
得
椭圆方程为![]()
第二问中,当
为钝角时,
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以椭圆方程可设为:![]()
3分
得
得
椭圆方程为
3分
(Ⅱ)当
为钝角时,
,
得
3分
所以
得![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com