由可知对都有 4分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该

 

函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

 

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

 

(3)对函数(常数>0)作出推广,使它们都是你所推广的

 

函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你

 

的研究结论).

 

查看答案和解析>>

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数>0)的值域为6,+∞,求的值;
(2)研究函数(常数>0)在定义域内的单调性,并说明理由;
(3)对函数(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).

查看答案和解析>>

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数>0)的值域为6,+∞,求的值;
(2)研究函数(常数>0)在定义域内的单调性,并说明理由;
(3)对函数(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).

查看答案和解析>>

某校为组建校篮球队,对报名同学进行定点投篮测试,规定每位同学最多投3次,每次在AB处投篮,在A处投进一球得3分,在B处投进一球得2分,否则得0分,每次投篮结果相互独立,将得分逐次累加并用X表示,如果X的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮方案有以下两种:
方案1:先在A处投一球,以后都在B处投;
方案2:都在B处投篮.
已知甲同学在A处投篮的命中率为0.4,在B处投篮的命中率为0.6.
(1)甲同学若选择方案1,求X=2时的概率;
(2)甲同学若选择方案2,求X的分布列和数学期望;
(3)甲同学选择哪种方案通过测试的可能性更大?请说明理由.

查看答案和解析>>

某校为组建校篮球队,对报名同学进行定点投篮测试,规定每位同学最多投3次,每次在AB处投篮,在A处投进一球得3分,在B处投进一球得2分,否则得0分,每次投篮结果相互独立,将得分逐次累加并用X表示,如果X的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮方案有以下两种:

方案1:先在A处投一球,以后都在B处投;

方案2:都在B处投篮.

已知甲同学在A处投篮的命中率为0.4,在B处投篮的命中率为0.6.

(1)甲同学若选择方案1,求X2时的概率;

(2)甲同学若选择方案2,求X的分布列和数学期望;

(3)甲同学选择哪种方案通过测试的可能性更大?请说明理由.

 

查看答案和解析>>


同步练习册答案