已知函数=x3+bx2+4cx是奇函数.函数在点处的切线的斜率为-6, 且当x=2时.函数有极值.(I)求b的值, 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)设函数f(x)=x3ax2+3x+5(a>0).

(1)已知f(x)在R上是单调函数,求a的取值范围;

(2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.

 

查看答案和解析>>

(本题满分12分)设函数f(x)=x3ax2+3x+5(a>0).
(1)已知f(x)在R上是单调函数,求a的取值范围;
(2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

(本题满分12分)设函数f(x)=x3ax2+3x+5(a>0).
(1)已知f(x)在R上是单调函数,求a的取值范围;
(2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x3-ax2-3x.

(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.

 

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.

(1)求a、b的值与函数f(x)的单调区间;

(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围.

 

查看答案和解析>>

1-5.ADDCA   6-10:BBC

9.如图设点P为AB的三等分点,要使△PBC的面积不小于,则点P只能在

AP上选取,由几何概型的概率

公式得所求概率为.故选A.

10.如图:易得答案选D.

11.由率分布直方图知,及格率==80%,

及格人数=80%×1000=800,优秀率=%.

12.

13.

14.在平面直角坐标系中,曲线分别表示圆和直线,易知

15. C为圆周上一点,AB是直径,所以AC⊥BC,而BC=3,AB=6,得∠BAC=30°,进而得∠B=60°,所以∠DCA=60°,又∠ADC=90°,得∠DAC=30°,

三、解答题

16.解:(1)   ………2分

                 ………3分

                                         ………5分

 所以函数的最小正周期                        ………6分         

(2)当, 

 ∴当时,有最大值;          ………10分

,即时,有最小值.       ………12分

17. 解:(I)由函数是奇函数,∴.                  2分

  (II)由x3+4cx

ax24c .

解得                                          6分

.               ………………………………………………8分

?Ⅲ?fx)=x3-8x,∴2x2-8=2(x+2)(x-2).           10分

>0得x<-2或x>2 ,  令<0得-2<x<2.                     12分

∴函数的单调增区间为(,[2,+;单调减区间为[-2,2].      14分

(或增区间为,(2,+;减区间为(-2,2))

 

18. 证明:(1)取PD中点Q, 连EQ , AQ , 则 ……………………………………1分

  …………………………………………2分

 ………………3分

  ………………………5分

 

(2)                                    

                                                           

 

 

 

 

 

. ………………………………………10分

解:(3)   …………………………………11分

. ………………………………14分

19. 解:满足条件的点共有个                   ……………………1分

(1)正好在第二象限的点有

,,,,,              ………………3分

故点正好在第二象限的概率P1=.                    ………………4分

(2)在x轴上的点有,,,,,           ……6分

故点不在x轴上的概率P2=1-=.                  ……………………8分

(3)在所给区域内的点有,,,,,         ………10分

故点在所给区域上的概率                  ……………………11分

答:(1)点正好在第二象限的概率是,(2)点不在x轴上的概率是,(3)点在所给区域上的概率                               …………………14分

20. 解:(1)令 ………2分

   (II)

………………………………………………9分

两边同乘以

故数列等差数列 ……………………………………………12分

21. . 解⑴设Q(x0,0),由F(-c,0)

A(0,b)知

    设

…2分

因为点P在椭圆上,所以…………4分

整理得2b2=3ac,即2(a2-c2)=3ac,故椭圆的离心率e=………6分

⑵由⑴知于是F(-a,0) Q

△AQF的外接圆圆心为(a,0),半径r=|FQ|=a……………………11分

所以,解得a=2,∴c=1,b=,所求椭圆方程为……14分

 

 


同步练习册答案