19.P1.P2.P是共线三点.点P分有向线段所成的比为λ.试求点P1分有向线段所成的比λ1= . 查看更多

 

题目列表(包括答案和解析)

给定平面上的点集P={P1,P2,…,P1994},P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G).
(1)求m(G)的最小值m0
(2)设G*是使m(G*)=m0的一个图案,若G*中的线段(指以P的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形.

查看答案和解析>>

给定平面上的点集P={P1,P2,…,P1994},P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G).
(1)求m(G)的最小值m
(2)设G*是使m(G*)=m的一个图案,若G*中的线段(指以P的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形.

查看答案和解析>>

给出下列命题:
①“sinα>sinβ”是“α>β”的既不充分又不必要条件;
②若f(x)在某区间M上为增函数,则对于该区间上的任意x,总有f′(x)>0;
③设空间任意一点O和不共线三点A、B、C,若点P满足向量关系
OP
=x
OA
+y
OB
+z
OC
,则P、A、B、C四点共面;
④若取值为x1,x2,x3…xn的频率分别为p1,p2,p3…pn,则其平均数为
n
i=1
xipi

其中所有真命题的序号是
①④
①④

查看答案和解析>>

给出下列命题:
①“sinα>sinβ”是“α>β”的既不充分又不必要条件;
②若f(x)在某区间M上为增函数,则对于该区间上的任意x,总有f′(x)>0;
③设空间任意一点O和不共线三点A、B、C,若点P满足向量关系
OP
=x
OA
+y
OB
+z
OC
,则P、A、B、C四点共面;
④若取值为x1,x2,x3…xn的频率分别为p1,p2,p3…pn,则其平均数为
n


i=1
xipi

其中所有真命题的序号是______.

查看答案和解析>>

一、选择题:

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.C 9.D 10.D 11.A 12.B

二、填空题:

13.14   14.2   15.30   16.①③

17. -1    18. -5   19.  -1-    20.     

21. 4    22.6ec8aac122bd4f6e    23.10   24.412    25.①④

三、解答题:

26解:(1)

,有

解得。                                      

(2)解法一:    

。 

解法二:由(1),,得

   

                                       

于是

              

代入得。          

27证明:(1)∵

                                        

(2)令中点为中点为,连结

的中位线

         

又∵

   

为正

        

又∵

∴四边形为平行四边形   

 

28解:(1)设米,,则

                                               

                                       

                                           

(2)                 

 

 

 此时                                            

(3)∵

                         

时,

上递增                    

此时                                             

答:(1)

(2)当的长度是4米时,矩形的面积最小,最小面积为24平方米

(3)当的长度是6米时,矩形的面积最小,最小面积为27平方米。                            

29解:(1)①若直线的斜率不存在,即直线是,符合题意。 

②若直线斜率存在,设直线,即

由题意知,圆心以已知直线的距离等于半径2,即:

解之得                                           

所求直线方程是                          

(2)解法一:直线与圆相交,斜率必定存在,且不为0,可设直线方程为

                  

又直线垂直,由

为定值。

是定值,且为6。                          

30解:(1)由题意得,                            

    ∴   

,∴

单调增函数,                                         

对于恒成立。    

(3)       方程;  

(4)       ∴ 

 ∵,∴方程为               

 令

 ∵,当时,

上为增函数;

 时,, 

上为减函数,  

 当时,                    

,            

∴函数在同一坐标系的大致图象如图所示,

∴①当,即时,方程无解。

②当,即时,方程有一个根。

③当,即时,方程有两个根                                                                                                     

 


同步练习册答案