21.选修4-2 矩阵与变换 查看更多

 

题目列表(包括答案和解析)

选修4-2矩阵与变换
(Ⅰ)已知矩阵A=
-1a
b3
所对应的线性变换把直线l:2x-y=3变换为自身,求A-1
(Ⅱ)已知
e1
=
1
1
是矩阵B=
c1
0d
属于特征值λ1=2的一个特征向量,求矩阵B及其另一个特征值及其对应的一个特征向量.

查看答案和解析>>

选修4-2   矩阵与变换
T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M(2x,4y).圆C:x2+y2=1在变换T的作用下变成了什么图形?

查看答案和解析>>

选修4-2  矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.

查看答案和解析>>

选修4-2  矩阵与变换
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵.

查看答案和解析>>

选修4—2:矩阵与变换

       若二阶矩阵满足

       (Ⅰ)求二阶矩阵

       (Ⅱ)把矩阵所对应的变换作用在曲线上,求所得曲线的方程.

查看答案和解析>>

一、填空题

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答题

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以OE//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)为圆周的点到直线的距离为-------2分

的方程为

的方程为----------------------------------------------------------------5分

(2)设椭圆方程为,半焦距为c,则

椭圆与圆O恰有两个不同的公共点,则 ------------------------------6分

时,所求椭圆方程为;-------------8分

时,

所求椭圆方程为-------------------------------------------------------------10分

(3)设切点为N,则由题意得,在中,,则

N点的坐标为,------------------- 11分

若椭圆为其焦点F1,F2

分别为点A,B故,-----------------------------------13分

若椭圆为,其焦点为,

此时    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加题)参考答案

21.(1)                                     ………………………………………………4分

   (2) 时对应的向量为时对应的向量为……10分

 

22.解:(1)由方程的(2)式平方减去(1)式得:  5分

(2)曲线的焦点到准线的距离为,离心率为

所以曲线的极坐标方程为                     10分

23.解:(1)赋值法:分别令,得 -----2分

(2)-------------------------------------------------6分

(3)的系数为:

所以,当时,展开式中的系数最小,为81.----10分

24.

 


同步练习册答案