即函数的单调递增区间为. 查看更多

 

题目列表(包括答案和解析)

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

已知函数

(1)设是函数的一个零点,求的值;

(2)求函数的单调递增区间.

【解析】第一问利用题设知.因为是函数的一个零点,所以

所以

第二问

,即)时,

函数是增函数,

故函数的单调递增区间是

 

查看答案和解析>>

已知函数f(x)=(x3+ax2+bx+3)•ecx,其中a、b、c∈R.
(1)当c=1时,若x=0和x=1都是f(x)的极值点,试求f(x)的单调递增区间;
(2)当c=1时,若3a+2b+7=0,且x=1不是f(x)的极值点,求出a和b的值;
(3)当c=0且a2+b=10时,设函数h(x)=f(x)-3在点M(1,h(1))处的切线为l,若l在点M处穿过函数h(x)的图象(即动点在点M附近沿曲线y=h(x)运动,经过点M时,从l的一侧进入另一侧),求函数y=h(x)的表达式.

查看答案和解析>>

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

给出定义:若 (其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.函数.对于函数,现给出如下判断:

①函数是偶函数;

②函数是周期函数; ks5u

③函数在区间(,]上单调递增;

④函数的图象关于直线(k∈Z)对称.

则判断正确的结论的个数是(    )

A.1               B.2               C.3              D.4

查看答案和解析>>


同步练习册答案