题目列表(包括答案和解析)
在平面直角坐标系xOy中,设曲线C1:
所围成的封闭图形的面积为
,曲线C1上的点到原点O的最短距离为
.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
已知极坐标的极点在平面直角坐标系的原点
处,极轴与
轴的正半轴重合,且长度单位相同.直线
的极坐标方程为:
,若点
为曲线![]()
上的动点,其中参数
.
(1)试写出直线
的直角坐标方程及曲线
的普通方程;
(2)求点
到直线
距离的最大值.
已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:
,点P(2cosα,2sinα+2),参数α∈[0,2π).
(1)求点P轨迹的直角坐标方程;
(2)求点P到直线l距离的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com