题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:
和直线
,
(1)求圆O和直线
的直角坐标方程;(2)当
时,求直线
与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数![]()
和
,不等式
恒成立,试求实数
的取值范围.
| 3 |
| 3 |
.本小题满分15分)
如图,已知椭圆E:![]()
,焦点为
、
,双曲线G:![]()
的顶点是该椭
圆的焦点,设
是双曲线G上异于顶点的任一点,直线
、
与椭圆的交点分别为A、B和C、D,已知三角形
的周长等于
,椭圆四个顶点组成的菱形的面积为
.![]()
(1)求椭圆E与双曲线G的方程;
(2)设直线
、
的斜率分别为
和
,探求
和![]()
的关系;
(3)是否存在常数
,使得
恒成立?
若存在,试求出
的值;若不存在, 请说明理由.
一、选择题
CCCBB BBDAB CA
二、填空题
13、
14、2 15、
16、③④
三、解答题
17.解:


建议评分标准:每个三角函数“1”分。(下面的评分标准也仅供参考)
18.解:
=
=
--(2分)
而
=
----------------------------------------------------------(2分)
且

-----(2分)
原式=
-------------(2分)
19.解:(1)由已知得
,所以
即三角形为等腰三角形。--------------------------------------------------------------------------------------------(3分)
(2)两式平方相加得
,所以
。------(3分)
若
,则
,所以
,而
这与
矛盾,所以
---------------------------------------(2分)
20.解:化简得
--------------------------------------------------(2分)
(1)最小正周期为
;--------------------------------------------------------------(2分)
(2)单调递减区间为
-------------------------------(2分)
(3)对称轴方程为
-------------------------------------------(1分)
对称中心为
------------------------------------------------------(1分)
21.对方案Ⅰ:连接OC,设
,则
,
而

当
,即点C为弧的中点时,矩形面积为最大,等于
。
对方案Ⅱ:取弧EF的中点P,连接OP,交CD于M,交AB于N,设
如图所示。
则
,
,


所以当
,即点C为弧EF的四等分点时,矩形面积为最大,等于
。
,所以选择方案Ⅰ。
22.解:(1)不是休闲函数,证明略
(2)由题意得,
有解,显然
不是解,所以存在非零常数T,使
,
于是有
,所以
是休闲函数。
(3)显然
时成立;
当
时,由题义,
,由值域考虑,只有
,
当
时,
成立,则
;
当
时,
成立,则
,综合的
的取值为
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com