4.已知函数= . 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)当时,利用函数单调性的定义判断并证明的单调性,并求其值域;

(Ⅱ)若对任意,求实数a的取值范围。

查看答案和解析>>

已知函数。(1)判断函数的奇偶性;

(2)设,求证:对于任意,都有

查看答案和解析>>

已知函数

     (1)若函数上的增函数,求实数的取值范围;

     (2)当时,若不等式在区间上恒成立,求实数的取值范围;

     (3)对于函数若存在区间,使时,函数的值域也是,则称上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。

查看答案和解析>>

已知函数

(1)求的单调区间;

(2)如果在区间上的最小值为,求实数以及在该区间上的最大值.

查看答案和解析>>

已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2) 证明:函数的图像关于直线对称。

查看答案和解析>>

一、填空题:中国数学论坛网 http://www.mathbbs.cn 2008年03月18日正在开通

1.2   2.11   3.3   4.   5.5   6.―2   7.   8.   9.18

2,4,6

二、选择题:

13.C   14.D   15.D   16.B

三、解答题:

17.解:设的定义域为D,值域为A

    由                                                         …………2分

                        …………4分

    又                                                    …………6分

                                                          …………8分

    的定义域D不是值域A的子集

    不属于集合M                                                             …………12分

18.解:如图建立空间直角坐标系

∵由题意可知∠C1AC=60°,C1C=  …………2分

               …………4分

                                …………6分

                                           …………8分

                     …………10分

            …………12分

19.解:(1)                                             …………2分

                             …………4分

               …………6分

   (2)设                                        …………8分

  …………10分

(m2)      …………12分

答:当(m2)   …………14分

20.解:(1)=3

                                                                …………2分

设圆心到直线l的距离为d,则

即直线l与圆C相离                                                   …………6分

   (2)由  …………8分

由条件可知,                                        …………10分

又∵向量的夹角的取值范围是[0,π]

                                                           …………12分

                                                       …………14分

21.解:(1)

   

                                …………4分

   (2)                                   …………5分

   

                                                           …………8分

                                      …………10分

   (3)

                                                       …………12分

   

    故103不是数列中的项                                                 …………16分

22.解:(1)易知                             …………2分

   

                                                …………4分

   (2)

   

     (*)                                                         …………6分

   

    同理                                                                                        …………8分

   

                                                                         …………10分

   (3)

    先探索,当m=0时,直线L⊥ox轴,则ABED为矩形,由对称性知,AE与BD相交于FK中点N

    且                                                                      …………11分

    猜想:当m变化时,AE与BD相交于定点         …………12分

    证明:设

    当m变化时首先AE过定点N

 

   

    ∴KAN=KEN   ∴A、N、E三点共线

    同理可得B、N、D三点共线

    ∴AE与BD相交于定点                                      …………18分