22.本题共有3小题.第1小题满分4分.第2小题满分6分.第3小题满分8分. 查看更多

 

题目列表(包括答案和解析)

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。

已知是公差为的等差数列,是公比为的等比数列。

(1)       若,是否存在,有说明理由;    

(2)       找出所有数列,使对一切,,并说明理由;

(3)       若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明。

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.

已知是公差为的等差数列,是公比为的等比数列.

(1)       若,是否存在,有说明理由;

(2)       找出所有数列,使对一切,,并说明理由;

(3)       若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明.

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,

第3小题满分8分.

已知数列是正整数),与数列是正整数).记

(1)若,求的值;

(2)求证:当是正整数时,

(3)已知,且存在正整数,使得在中有4项为100.

的值,并指出哪4项为100.

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。

 已知是公差为d的等差数列,是公比为q的等比数列。

(1)若,是否存在,有?请说明理由;

(2)若aq为常数,且aq0)对任意m存在k,有,试求aq满足的充要条件;

(3)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明。

查看答案和解析>>

 (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

在数列中,

(1)设,证明:数列是等差数列;

(2)设数列的前项和为,求的值;

(3)设,数列的前项和为,是否存在实数,使得对任意的正整数和实数,都有成立?请说明理由.

查看答案和解析>>

一、填空题:中国数学论坛网 http://www.mathbbs.cn 2008年03月18日正在开通

1.2   2.11   3.3   4.   5.5   6.―2   7.   8.   9.18

2,4,6

二、选择题:

13.C   14.D   15.D   16.B

三、解答题:

17.解:设的定义域为D,值域为A

    由                                                         …………2分

                        …………4分

    又                                                    …………6分

                                                          …………8分

    的定义域D不是值域A的子集

    不属于集合M                                                             …………12分

18.解:如图建立空间直角坐标系

∵由题意可知∠C1AC=60°,C1C=  …………2分

               …………4分

                                …………6分

                                           …………8分

                     …………10分

            …………12分

19.解:(1)                                             …………2分

                             …………4分

               …………6分

   (2)设                                        …………8分

  …………10分

(m2)      …………12分

答:当(m2)   …………14分

20.解:(1)=3

                                                                …………2分

设圆心到直线l的距离为d,则

即直线l与圆C相离                                                   …………6分

   (2)由  …………8分

由条件可知,                                        …………10分

又∵向量的夹角的取值范围是[0,π]

                                                           …………12分

                                                       …………14分

21.解:(1)

   

                                …………4分

   (2)                                   …………5分

   

                                                           …………8分

                                      …………10分

   (3)

                                                       …………12分

   

    故103不是数列中的项                                                 …………16分

22.解:(1)易知                             …………2分

   

                                                …………4分

   (2)

   

     (*)                                                         …………6分

   

    同理                                                                                        …………8分

   

                                                                         …………10分

   (3)

    先探索,当m=0时,直线L⊥ox轴,则ABED为矩形,由对称性知,AE与BD相交于FK中点N

    且                                                                      …………11分

    猜想:当m变化时,AE与BD相交于定点         …………12分

    证明:设

    当m变化时首先AE过定点N

 

   

    ∴KAN=KEN   ∴A、N、E三点共线

    同理可得B、N、D三点共线

    ∴AE与BD相交于定点                                      …………18分