题目列表(包括答案和解析)
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
| 分 组 | 频 数 | 频 率 |
| [40,50 ) | 2 | 0.04 |
| [50,60 ) | 3 | 0.06 |
| [60,70 ) | 14 | 0.28 |
| [70,80 ) | 15 | 0.30 |
| [80,90 ) | a | b |
| [90,100] | 5 | 0.1 |
| 合 计 | c | d |
| 分 组 | 频 数 | 频 率 |
| [40,50 ) | 2 | 0.04 |
| [50,60 ) | 3 | 0.06 |
| [60,70 ) | 14 | 0.28 |
| [70,80 ) | 15 | 0.30 |
| [80,90 ) | ||
| [90,100] | 4 | 0.08 |
| 合 计 |
| 分组 | 频数 | 频率 |
| [40,50) | 2 | 0.04 |
| [50,60) | 3 | 0.06 |
| [60,70) | 14 | 0.28 |
| [70,80) | 15 | 0.30 |
| [80,90) | ||
| [90,100) | 4 | 0.08 |
| 合计 |
| 分组 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | 合计 | |
| 频数 | 2 | 3 | 14 | 15 | 4 | ||
| 频率 | 0.04 | 0.06 | 0.28 | 0.30 | 0.08 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com