题目列表(包括答案和解析)
已知函数
和函数
,记
.
(1)当
时,若
在
上的最大值是
,求实数
的取值范围;
(2)当
时,判断
在其定义域内是否有极值,并予以证明;
(3)对任意的
,若
在其定义域内既有极大值又有极小值,试求实数
的取值范围.
已知函数![]()
;
(1)若函数
在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数
,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数
,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1)
,
因为
在其定义域内的单调递增函数,
所以
内满足
恒成立,即
恒成立,
亦即
,
即可 又![]()
当且仅当
,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,设![]()
上的增函数,
依题意需![]()
实数k的取值范围是![]()
已知函数
和函数
,记
.
(1)当
时,若
在
上的最大值是
,求实数
的取值范围;
(2)当
时,判断
在其定义域内是否有极值,并予以证明;
(3)对任意的
,若
在其定义域内既有极大值又有极小值,试求实数
的取值范围.
(本小题共12分)
已知函数
,![]()
(1)若
对于定义域内的
恒成立,求实数
的取值范围;
(2)设
有两个极值点
,
且
,求证:
;
(3)设
若对任意的
,总存在
,使不等式
成立,求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com