故.解得.经检验符合题意. 查看更多

 

题目列表(包括答案和解析)

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>

有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在△ABC中角A,B,C所对的边长分别为a,b,c,已知角B=45°,a=
3
,(  ),求角A.若已知正确答案为A=60°,且必须使用所有已知条件才能解得,请你选出一个符合要求的已知条件.

查看答案和解析>>

有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在△ABC中角A,B,C所对的边长分别为a,b,c,已知角B=45°,a=
3
c=
6
+
2
2
c=
6
+
2
2
,求角A.若已知正确答案为A=60°,且必须使用所有已知条件才能解得,请你写出一个符合要求的已知条件.

查看答案和解析>>

某医疗研究所为了检验某种血清预防感冒的作用,把名使用血清的人与另外名未用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用列联表计算得,经查对临界值表知

对此,四名同学做出了以下的判断:

p:有的把握认为“这种血清能起到预防感冒的作用”

q:若某人未使用该血清,那么他在一年中有的可能性得感冒

r:这种血清预防感冒的有效率为    

s:这种血清预防感冒的有效率为 

则下列结论中,正确结论的序号是           .(把你认为正确的命题序号都填上)

(1)  p∧﹁q ;               (2)﹁pq ;       

(3)(﹁p∧﹁q)∧(rs);   (4)(p∨﹁r)∧(﹁qs)

查看答案和解析>>

有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在中角所对的边长分别为,已知角      ,求角.若已知正确答案为,且必须使用所有已知条件才能解得,请你写出一个符合要求的已知条件.

 

查看答案和解析>>


同步练习册答案