点评:可化为.体现求通项公式的转化方法,而(2)的证明可以使用数学归纳法.④数列函数导数与不等式 查看更多

 

题目列表(包括答案和解析)

20、观察下面方程的解法
x4-13x2+36=0
解:原方程可化为(x2-4)(x2-9)=0
∴(x+2)(x-2)(x+3)(x-3)=0
∴x+2=0或x-2=0或x+3=0或x-3=0
∴x1=2,x2=-2,x3=3,x4=-3
你能否求出方程x2-3|x|+2=0的解?

查看答案和解析>>

探究发现
阅读下列解题过程并解答下列问题:
解方程|x+3|=2.
解:①若x+3>0时,原方程可化为一元一次方程x+3=2.∴x=-1;
②若x+3<0时,原方程可化为一元一次方程-(x+3)=2.∴x=-5;
③若x+3=0时,则原式中|0|=2,这显然不成立,∴原方程的解是x=-1或x=-5.
(1)解方程|3x-2|-4=0.
(2)若方程|x-5|=2的解也是方程4x+m=5x+1的解,求m2-4m+4的值.
(3)探究:方程|x+2|=b+1有解的条件.

查看答案和解析>>

下面是芩芩用换元法解方程2(x+1)2+3(x+1)(x-2)-2(x-2)2=0的解答过程,请你判断是否正确.若有错误,请按上述思路求出正确答案.
解:设x+1=m,x-2=n,则原方程可化为:2m2+3mn-2n2=0,
即a=2,b=3n,c=-2n2
∴m=
3n±
9n2-4×2(-2n2)
2
=
3n±5n
2

即 m1=4n,m2=-n.
所以有x+1=4(x-2)或x+1=-(x-2),
∴x1=3,x2=
1
2

查看答案和解析>>

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

为解方程(x2-1)2-5(x2-1)+4=0,我们可将x2-1看作一个整体,然后设x2-1=y;那么原方程可化为y2-5y+4=0①,解这个方程,得y1=1,y2=4.当y1=1时,x2-1=1,所以x=±
2
;当y2=4时,x2-1=4,所以x=±
5
则原方程的解为x1=
2
x2=-
2
x3=
5
x4=-
5

解答下列问题:
(1)填空:在由原方程得到方程①的过程中,利用
换元
换元
法达到降次的目的,体现了
转化
转化
的数学思想;
(2)请利用上述方法解方程:(x2-2)2-5(x2-2)+6=0.

查看答案和解析>>


同步练习册答案