已知函数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=4sin(2x-
π
3
)+1
,给定条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p是q的充分条件,则实数m的取值范围为
 

查看答案和解析>>

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(
52
))的值是
 

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

8、已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为(  )

查看答案和解析>>

已知函数f(x)=
3-x,x>0
x2-1.x≤0
,则f[f(-2)]=
 

查看答案和解析>>

一:选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

B

B

B

D

B

D

C

C

A

 二、填空题:

13、0

14、

15、

16、①②

三、解答题:

17、(Ⅰ)∵

        

 

 

 

的最大值为,最小正周期是。…………………6分 

注:得出表达式的简化形式得4分,最大值、周期各得1分。

(Ⅱ)由(Ⅰ)知

成立的的取值集合是………10分

注:正确写出正弦的单调增区间2分,答案正确2分。

18、解:(Ⅰ),      

 ,

随机变量的分布列为

0

1

2

3

P

数学期望………………………………………8分

注:每个概率算对得1分,分布列2分,期望2分。

   (II)所求的概率…………12分

注:知道概率加法公式得2分,结果正确得2分。

19、(本题满分12分)

证明:(1)在直三棱柱

∵底面三边长

,              --------------------------------1分

又直三棱柱中  , 

      

       ---------------------------------3分

;                 ---------------------------------4分

(2)设的交点为,连结,---------------------5分

∵D是AB的中点,E是BC1的中点,

,                    ----------------------------7分

.              ----------------------------8分

(3)过点C作CF⊥AB于F,连接C1F         

由已知C1C垂直平面ABC,则∠C1FC为二面角的平面角 ----------9分

在Rt△ABC中,,,则           ----------10分

                                  ----------11分

∴二面角的正切值为                              ---------- 12分

(另:可以建立空间直角坐标系用向量方法完成,酌情给分,过程略)

20、解(1)

增函数,(0,2)为减函数

      ………………………………………………2分

       (2), …………………         4分

                            5分

       ……………………7分

   (3)

      

      

       ……………………………………………………………………12分

21、 解:(1)f(x)对任意

                             2分

        令

                                       4分

   (2)解:数列{an}是等差数列    f(x)对任意x∈R都有

        则令                        5分

       ∴{a­­n}是等差数列                                              8分

   (3)解:由(2)有                         9分

       

∴Tn≤Sn                  该题也可用数学归纳法做。              12分

22、解:(1)∵

∴线段NP是AM的垂直平分线,                                      2分

                                   3分

                                            

∴点N的轨迹是以点C、A为焦点的椭圆;                             4分

∴点N的轨迹E的方程是                                  5分

(2)当直线的斜率不存在时,,∴=         6分

当直线的斜率存在时,设其方程为,

,△,              7分

设G(x1,y1),H(x2,y2)

,,∵,∴   8分

,,                             9分

,,,                  10分

 ,

∵点在点之间  ,   ∴<1                                   11分

的取值范围是[)。


同步练习册答案