题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、 选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
A
C
C
C
D
B
B
C
C
B
二、填空题
题号
11
12
13
14(1)
14(2)
答案

6
2

3
三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.
15.解:(Ⅰ)
,不等式的解为
,
,
(Ⅱ)由(Ⅰ)可知
,
,
,
16、解:


(I)函数
的最小正周期是
……………………………7分
(II)∴
∴
∴
所以
的值域为:
…………12分
17、解:(1)因为
,
,
成等差数列,所以
即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得
(2+m)2=(1+m)(4+m),得m=0.
(2) 若
、
、
是两两不相等的正数,且
、
、
依次成等差数列,设a=b-d,c=b+d,(d不为0);
f(a)+f(c)
因为(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0
所以:0<(a+m)(c+m)<(b+m)2,得0<
<1,得log2
<0,
所以:f(a)+f(c)<
18. 解:(Ⅰ)
的定义域关于原点对称
若
为奇函数,则
∴a=0
(Ⅱ)
∴在
上
∴
在
上单调递增
∴
在
上恒大于0只要
大于0即可,∴
若
在
上恒大于0,a的取值范围为
19. 解:(Ⅰ)设
的公差为
,则:
,
,
∵
,
,∴
,∴
. ………………………2分
∴
. …………………………………………4分
(Ⅱ)当
时,
,由
,得
. …………………5分
当
时,
,
,
∴
,即
. …………………………7分
∴
. ……………………………………………………………8分
∴
是以
为首项,
为公比的等比数列. …………………………………9分
(Ⅲ)由(2)可知:
. ……………………………10分
∴
. …………………………………11分
∴
.
∴
.
∴

. ………………………………………13分
∴
. …………………………………………………14分
20.解:(Ⅰ)设函数
(Ⅱ)由(Ⅰ)可知
可知使
恒成立的常数k=8.
(Ⅲ)由(Ⅱ)知
可知数列
为首项,8为公比的等比数列
即以
为首项,8为公比的等比数列.
则
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com