20. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一、       选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空题

题号

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.

15.解:(Ⅰ),不等式的解为

(Ⅱ)由(Ⅰ)可知

16、解:

 

   (I)函数的最小正周期是        ……………………………7分

   (II)∴   ∴   

     ∴               

    所以的值域为:                 …………12分

17、解:(1)因为成等差数列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若是两两不相等的正数,且依次成等差数列,设a=b-d,c=b+d,(d不为0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因为(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定义域关于原点对称

为奇函数,则  ∴a=0

(Ⅱ)∴在上单调递增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范围为

19. 解:(Ⅰ)设的公差为,则:

,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)当时,,由,得.     …………………5分

时,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以为首项,为公比的等比数列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)设函数

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常数k=8.

(Ⅲ)由(Ⅱ)知 

可知数列为首项,8为公比的等比数列

即以为首项,8为公比的等比数列. 则 

 


同步练习册答案