20.将一长为8cm.宽为5cm的矩形铁皮.在各角剪去相同的四个小正方形.然后折成一个无盖铁盒.问剪去的小正方形边长为多少时.铁盒容积最大.最大容积为多少? 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)将一枚质地均匀的骰子(形状为正四面体,四个面上分别标有数字

1,2,3,4的玩具)先后抛掷两次,观察抛掷后不能看到的数字的点数依次为

(1)求的概率;(2)试将右侧求(1)中概率P的基本语句补充完整;(3)将a,b,3的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

(本题满分12分) 将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先

后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为,第二次朝下面的数

字为。用表示一个基本事件。

请写出所有的基本事件;

求满足条件“为整数”的事件的概率;

求满足条件“”的事件的概率。

查看答案和解析>>

(本小题满分12分)
将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=

(Ⅰ)求证:DE⊥AC;
(Ⅱ)求DE与平面BEC所成角的正弦值;
(Ⅲ)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.

查看答案和解析>>

 
(本小题满分12分)将一张2×6米的硬钢板按图纸的要求进行操作:沿线裁去阴影部分,把剩余的部分按要求焊接成一个有盖的长方体水箱(⑦为底,①②③④为侧面,⑤+⑥为水箱盖,其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x米,容积为y立方米。

   (1)写出y关于x的函数关系式;

   (2)如何设计x的大小,使得水箱的容积最大?

查看答案和解析>>

(本题12分)

有一种舞台灯,外形是正六棱柱,在其每一个侧面 (编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。

(1)求①号面需要更换的概率;

(2)求6个面中恰好有2个面需要更换的概率;

(3)写出的分布列,求的数学期望。

 

查看答案和解析>>

2008.9

一、(每题5分,共60分)

  1.B  2.B  3.B  4.C  5.C   6.A   7.D  8.B  9.A  10.C   11.D  12.B

二、(每题5分,共20分)

     13.     14.

     15.15                  16.20

三、17.(10分)

 

 

 

 

 

 

 

 

 

     ④当时,有

     综上所述,m 的取值范围为

          ……………………………………………………………(10分)

18.(12分)

   解:求导得:,由于的图象与直线

                                                

相切于点(1,-11)所以有          即:

                                        

……………………………………………………………………………(8分)

解得  ………………………………………………………(10分)

所以………………………………………………(12分)

19.(12分)

解:(1)当时,不等式化为:…………………(2分)(2)当时,原不等式可化为:

     当时,有…………(4分)

时,原不等式可化为:

①当时有

②当

③当………………………………………(10分)

20.(12分)

   解:设剪去的小正方形边长为x┩,则铁盒的底面边长分别为:

                               

┩,┩,所以有      得…………(2分)

                               

设容积为U,则…………(4分)

(舍去)………(8分)当时,   当时,

∴当时,取得极大值,即的最大值为18………………(11分)

所以剪去的小正方形边长为1┩时,容积最大,最大容积为18

……………………………………………………………………(12分)

21.(12分)

解:函数的导数………………………………………………………………(2分)

时,即时,函数上为增函数,不合题意。

……………………………………………………………(4分)

时,即时,函数上为增函数,在内为减函数,在上为增函数……………………………………(8分)

依题应有当;当所以:,解得,因此所求范围为………………(12分)

22.(12分)

(Ⅰ)设,则对于都有

等价于对于恒成立。………………(2分)

∴只需上的最小值即可

的关系如下表:

-3

(-3,-1)

-1

(-1,2)

2

(2,3)

3

 

+

0

-

0

+

 

-45+k

7+k

-20+k

-9+k

于是的最小值为,所以,即为所求…………………………………………………………………………(6分)

(Ⅱ)对任意都有“

等价于“的最大值小于或等于的最小值”……………………………………………………………………(8分)

下面求上的最小值

列表

-3

(-3,-1)

-1

3

 

+

0

-

0

+

 

-21

-1

111

上的最小值为-21,又内最大值为于是为所求。

………………………………………………………………(12分)


同步练习册答案