6.已知. 查看更多

 

题目列表(包括答案和解析)

5、已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的(  )

查看答案和解析>>

精英家教网已知,如图:四边形ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,
(1)求证:直线MN⊥直线AB;
(2)若平面PDC与平面ABCD所成的二面角大小为θ,能否确定θ使直线MN是异面直线AB与PC的公垂线,若能确定,求出θ的值,若不能确定,说明理由.

查看答案和解析>>

已知α,β均为锐角,且α+β=
π4
,则(1+tanα)(1+tanβ)=
 

查看答案和解析>>

已知,椭圆C过点A(1,
32
)
,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

已知α,β,γ成公比为2的等比数列(α∈[0,2π]),且sinα,sinβ,sinγ也成等比数列.求α,β,γ的值.

查看答案和解析>>

 

一、选择题

ACADB   BBCAB

二、填空题

11.1   12.-6   13.0   14.4    15.450  16.31030

 

三、解答题:

17.(1)恰有3个红球的概率为                                     …………5分

   (2)停止摸球时,已知摸到红球次数为三次记为事件B

则事件B发生所摸球的次数为3次 4次或5次                       …………8分

所以              …………12分

 

18.解:设           …………2分

    即

                                              …………4分

   (1)当

                                                                 …………8分

   (2)当上是增函数,

    所以

    故                                           …………12分

 

19.解:(I)依题意

   

                                       …………3分

    故上是减函数

   

    即                                                            ……………6分

   (II)由(I)知上的减函数,

    又

                                                                    …………9分

    故

    因此,存在实数m,使得命p且q为真命题,且m的取值范围为

                                                                    …………12分

 

20.解:(1),                                           …………2分

    由题知:;                  …………6分

   (2)由(1)知:,                            …………8分

    恒成立,

    所以:                                 …………12分

 

21.解:(1)上,

    ,                                                                 …………1分

    为首项,公差为1的等差数列,

                                 …………4分

    当

                                                                    …………6分

    证明:(II)

    ,…………8分

   

    …………14分

 

22.解:(I)函数内是奇函数等价于

    对任意                                …………2分

   

    即,…………4分

    因为

    即,                                                                    …………6分

    此式对任意

    所以得b的取值范围是                                                 …………8分

   (II)设任意的

    得,                                            …………10分

    所以,                   …………12分

    从而

    因此内是减函数,具有单调性。                      …………14分

 

 


同步练习册答案